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Introduction
Oral cancer is one of the most dangerous forms of cancer.1 Many 
patients with oral cancer do not receive treatment until the disease 
has reached an advanced stage, resulting in a poor prognosis. Early 
screening and diagnosis of oral cancer can improve survival rates 
and reduce unnecessary costs.2 The development of oral cancer is 
a long process that passes through a “precancerous” period. Oral 
potentially malignant disorders (OPMDs), as defined by the World 
Health Organization in 2020, are any oral mucosal abnormalities 
associated with a statistically increased risk of developing oral 
cancer.3 These include oral leukoplakia, proliferative verrucous 
leukoplakia (PVL), erythroplakia, oral submucosal fibrosis, oral 
lichen planus (OLP), actinic keratosis, palatal changes in reverse 
smokers, discoidal lupus erythematosus, dyskeratosis congenital, 
oral lichenoid lesions, and oral chronic graft-versus-host disease. 
OPMDs is considered a general concept because all 11 diseases 
carry a risk of progression to oral cancer, although not all cases 

eventually become malignant.3 Therefore, it is crucial to iden-
tify lesions that are likely to undergo malignant transformation. 
Visual examination is the most common and intuitive method for 
this purpose. Additionally, special staining and fluorescence ex-
amination are also used to identify OPMDs.4–6 Pathological ex-
amination remains the gold standard for diagnosing OPMDs, but 
it has the drawbacks of invasiveness and operational difficulty.7 
Furthermore pathologistsmust spend considerable time and effort 
analyzing images from pathological slides, and the influence of the 
examiners subjective judgment cannot be ignored.8

The concept of artificial intelligence (AI) was first proposed in 
the 1950s. AI, which originates from computer science, refers to 
a set of theories, methods, technologies, and application systems 
that simulate, extend, and enhance human intelligence. AI attempt 
to develop computer systems that imitate human work and thought 
processes. The strength of AI lies in its ability to learn and iden-
tify patterns and relationships from large, multidimensional, and 
multimodal data sets. However, due to limitations in computing 
power and data availability, the application of AI has faced many 
challenges.9 Machine learning is one of the derivative technolo-
gies of AI and is an essential condition for machines to achieve 
intelligence.10 Deep learning (DL) enables the processing of more 
complex data by increasing the number of hidden layers in artifi-
cial neural network algorithm. It represents a more advanced stage 
of machine learning. DL specializes in discovering complex struc-
tures in multi-dimensional data and extracting features, overcom-
ing the data size limitations inherent in traditional ML.11 DL tech-
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nologies include deep belief network convolutional neural network 
(CNN), and recurrent neural network. The advantage of CNN is 
that it can directly input data such as images, automatically seg-
ment and extract features from each part of the data, and integrate 
convolution layers for data processing, thus avoiding errors caused 
by manual input and minimizing susceptibility to interference. 
The number of image features that can be recognized by CNN has 
increased significantly. As a result, the introduction of CNN has 
brought substantial improvements to fields such as image process-
ing and natural language processing, and holds great potential for 
medical applications requiring image recognition, such as medical 
imaging and histopathology.12 With the rapid development of AI-
related technology, its application in the medical field is expected 
to become increasingly widespread. This review provides an over-
view of emerging DL techniques and their applications in the diag-
nosis and prognosis of OPMDs.

Application of DL in the auxiliary diagnosis and screening of 
OPMDs
There are various clinical examination methods for OPMDs, such 
as toluidine blue staining, autofluorescence, exfoliative cytology, 
chemiluminescence, and pathological examination. The results of 
these tests are typically reviewed by experienced doctors, which 
can make the diagnosis subjective. DL technology, represented 
by CNN algorithm, has unique advantages in image processing, 
which is helpful for the DL of pathological or imaging image clas-

sification. The internal structure of CNNs is achieved by providing 
data, mainly model parameters, in a convolutional and repetitive 
manner. The training process is repeated until incremental im-
provements in model detection ability allow the input image to be 
mapped to a specific label.13 With the assistance of CNN, the com-
puter automatically identifies the best features to match the target 
image by predesigning the learned feature variables and directly 
classifies the image without relying on a large amount of data pre-
processing or human operation and interference. AI technology 
has been widely used in clinical practice. Figure 1 demonstrates 
that it can assist doctors in the diagnosis of oral cancer and pre-
cancerous lesions bycompressing, enhancing, reducing, matching, 
describing, and recognizing various images.14

DL in clinical photographic images of OPMDs
At present, visual examination and palpation are the most routine 
methods for detecting oral cancer and OPMDs. These two exami-
nation methods are intuitive and convenient but require a high lev-
el of diagnostic ability and experience from the doctor. Some less 
developed regions may not have specialists available to diagnose 
OPMDs by conventional methods.

Algorithms such as DL-based CNN and DenseNet have been 
used to detect lesions in clinical images of the skin and larynx 
with results comparable to those of experts.15–17 However, iden-
tifying OPMDs from photographic images is much more diffi-
cult than classifying skin lesions because mucosal lesions are of-
ten hidden or masked in a complex background by overlapping 

Fig. 1. Deep learning models can be applied to assist in the diagnosis and prognosis of oral potentially malignant disorders. 
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teeth, tongue, and palate.18 Despite facing more challenges, some 
DL algorithms have been successfully applied to clinical photo-
graphic image detection and analysis of OPMDs. In general, DL 
models are divided into segmentation models, image classifica-
tion models, and object detection models. Segmentation models 
are used to distinguish the lesion area from normal tissue, image 
classification models usually identify whether the lesion is cancer-
ous, and object detection models diagnose the lesion as a more 
specific disease. For instance, Warin et al.19 used DenseNet-169, 
ResNet-101, SqueezeNet, and Swe-S as classification models and 
adopted Faster R-CNN, YOLOv5, RetinaNet, and CenterNet2 as 
detection models to analyze 980 images (365 oral squamous cell 
carcinoma [OSCC] images, 315 OPMDs images, and 300 benign 
lesions images). Compared with the results of oral and maxil-
lofacial surgeons and general practitioners, the sensitivity and 
specificity of DenseNet-169 and ResNet-101 classification models 
were better than those of specialists and general practitioners. The 
sensitivity of R-CNN was between that of specialists and general 
practitioners, indicating that the CNN algorithm-based model has 
an expertlevel ability to distinguish oral cancer and OPMDs from 
benign lesions.19 Keser et al.20 developed a CNN model based on 
GoogleNet Inception V3 to identify photographic images of OLP. 
They found that this model was highly effective in distinguishing 
normal mucosa from OLP lesions. Tanriver et al.21 realized that ex-
cellent object detection models and classification models could be 
concatenated for identifying oral lesions. In their study, they pro-
posed an end-to-end two-stage model combining the classification 
model EfficientNet-b4 with the detection model YOLOv5l to clas-
sify lesions into three categories: benign, OPMDs, and oral cancer. 
This is a low-cost OPMDs screening method that can automati-
cally detect and classify various types of oral lesions in realtime.21

Ferrer-Sánchez et al.22 used a U-Net-based lesion segmentation 
model and a multi-task CNN classifier model to analyze 261 clini-
cal photographs of oral leukoplakia to predict the risk of epithelial 
dysplasia and malignant transformation. One of the innovations 
of this study was the construction of two attention heatmaps of 
the images to interpret the predictions made by the model. The 
results showed that for predicting malignant transformation, the 
model achieved a sensitivity of 1 and specificity of 0.692, while 
for predicting high-risk dysplasia, the model achieved a specificity 
of 0.740 and sensitivity of 0.928. These two attention heatmaps, 
explaining the risk of malignant transformation and epithelial dys-
plasia, respectively, greatly increased the confidence in the predic-
tion model.22

With the popularity of smartphones, mobile phones have be-
come one of the most convenient tools for taking pictures. In a 
retrospective study by Lin et al.,23 they used the HRNet model 
based on the CNN algorithm to analyze mucosal lesion images tak-
en using smartphones. After standardized training in photographic 
methods, Lin et al.23 used the HRNet model to analyze 688 images 
of mucosal lesions (251 recurrent aphthous ulcers, 231 low-risk 
OPMDs, 141 high-risk OPMDs, and 65 oral cancer) and 760 im-
ages of normal mucosa. The results showed that the sensitivity of 
the HRNet model was better than other classification models, such 
as VGG16, ResNet50, DenseNet169, and HRNET-W18, though it 
still misdiagnosed 1.9% of high-risk OPMDs as recurrent aphthous 
ulcer.23 The missed diagnosis of high-risk diseases is more harmful 
than the misdiagnosis of low-risk diseases in screening, as patients 
may lose the best opportunity for treatment. Despite the good re-
sults of the classification model in Lin’s study, the ability of the 
CNN model to analyze images taken by smartphones compared 
with specialists could not be determined. Without further optimiza-

tion of the photographing method or classification model, smart-
phones cannot replace the role of digital single-lens reflex cameras 
in image acquisition.

Application to autofluorescence spectrum analysis
Autofluorescence is a safe and convenient method for screening 
OPMDs and early oral cancer. When normal tissues are exposed to 
blue light, they absorb part of the photon energy and emit lower-
energy photons, a phenomenon known as autofluorescence. The 
fluorescence-producing molecules involved are mainly nicotina-
mide adenine dinucleotide, flavin adenine dinucleotide, and some 
elastin, which makes the image of normal tissue appear with green 
fluorescence. Abnormal tissues, due to changes in porphyrin me-
tabolism and the breakdown of elastin, emit less fluorescence 
in areas at risk of malignant transformation, showing a lack of 
fluorescence, which appears black in the image.24 In a study by 
Morikawa, the evaluation of autofluorescence images was entirely 
subjective, showing high sensitivity (98.0%) and low specificity 
(43.2%) for detecting squamous cell carcinoma. Factors such as in-
flammation may interfere with the findings. Therefore, Morikawa 
concluded that a new evaluation method should be developed to 
obtain an objective evaluation.25

van Staveren et al.26 trained a DL model based on artificial neu-
ral network algorithms to analyze the autofluorescence spectrum 
of oral leukoplakia to determine its characteristics and grade of 
dysplasia. The results of the study showed that DL could effec-
tively distinguish between the autofluorescence spectra of leuko-
plakia and normal tissue, as well as between homogeneous and 
heterogeneous leukoplakia.26 Although the interpretation of auto-
fluorescence spectra by artificial neural network algorithms may 
not necessarily be the best method for evaluating autofluorescence 
detection, this study found that the edges of areas with fluores-
cence loss may not be distinguishable by the naked eye. Real-time 
intraoperative detection of the spectrum at each pixel can help the 
physician determine the extent of resection required for oral leu-
koplakia.

DL technology combined with exfoliative cytology
Exfoliative cytology is considered an effective method for mass 
screening of high-risk populations, and its role in cervical cancer 
screening has been well established.27 Previous research from our 
group has confirmed that exfoliative cytology hassignificant po-
tential as an accurate and simple diagnostic method for clinically 
suspected oral precancer and oral cancer.28 In the traditional ex-
foliative cytology test, oral mucosal brush specimens are directly 
applied to glass slides for staining and observation. The analysis of 
cell morphology is a burdensome task that relies on experienced 
specialists.29,30

Sunny et al.31 used the Inception V3 model to analyze exfo-
liative cytology images of oral cancer and OPMDs, which was 
employed to automatically diagnose and risk-grade OPMDs. The 
test results of this model showed sensitivity and specificity of 73% 
and 100%, respectively. The study concluded that the tele-cytology 
platform combined with the CNN model improved accuracy by 
30% compared to the traditional manual method.31

Exfoliative cytology is a qualitative rather than quantitative 
method for OPMD detection. Liu et al.32 developed the oral cancer 
risk index 2 (OCRI2) for the quantitative evaluation of leukoplakia. 
In this study, the peak random forest model was used to analyze the 
exfoliative cytology results of 68 patients with oral leukoplakia 
and calculate the corresponding OCRI2 values. The results showed 
that an OCRI2 value of 0.5 was the best threshold for predicting 
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the malignant transformation of leukoplakia (OCRI2 values higher 
than 0.5 indicated high-risk leukoplakia, while values lower than 
0.5 indicated low-risk leukoplakia). Using OCRI2 to quantitatively 
predict the risk of malignant transformation of leukoplakia based 
on exfoliative cytology can reduce the cost of patient follow-up.32 
OLP may be severe on one side of the buccal mucosa and mild on 
the other side, but the mild side may still have a risk of malignant 
transformation.3,33,34 Despite this, it is clinically difficult to per-
form a pathological examination of the minor side mucosa, and 
noninvasive exfoliative cytology is acceptable. Therefore, the mild 
side mucosa of patients with OLP can be screened by DL-assisted 
exfoliative cytology when necessary to determine the subsequent 
treatment plan.

DL in pathological images of OPMDs
Many studies have shown that DL algorithms can assist patholo-
gists in the diagnosis of oral malignant tumors.35 For instance, 
Aubreville et al.36 used the LeNet-5 model to identify confocal 
laser endomicroscopy images of OSCC, showing that the average 
accuracy was 88.3%, sensitivity was 86.6%, and specificity was 
90%, which was even better than classifiers based on conventional 
AI algorithms.

Pathological examination is the gold standard for the diagnosis 
of OPMDs. AI-based analysis of histological images can minimize 
human interference and reduce the subjective influence of pathol-
ogists. Epithelial dysplasia is an important feature of malignant 
transformation in OPMDs, and the nuclei of these abnormal epi-
thelial cells undergo varying degrees of change. Alshawwa et al.37 
used multiple CNN models to analyze changes in nuclear entropy 
in tissue sections to identify oral leukoplakia and PVL. The Mask 
R-CNN model was used to segment the nucleus images and extract 
image features. The average accuracy of the model in segmenting 
the nuclei of leukoplakia, PVL, and SCC was 92.95%. The use 
of polynomial classifiers to distinguish leukoplakia and PVL also 
achieved good results, with average sensitivity of 95.83%, average 
specificity of 98.29%, and average accuracy of 97.05%, demon-
strating that the classifier could distinguish between the two le-
sions.37,38 Idrees et al.38 combined whole slide imaging with com-
puter-aided image analysis technology to construct an artificial 
neural network-multilayer perceptron to analyze and identify OLP. 
The principle of this study is that the total number of monocytes 
and granu locytes increases in OLP lesions. The results showed 
that the model could determine the critical point between OLP 
and other lichi-like diseases based on the number of inflamma-
tion cells, with a sensitivity of 100% and an accuracy of 94.62%.38 
It is well known that AI mainly relies on the segmentation and 
identification of nuclei to analyze pathological images. Therefore, 
compared with the interpretation of nuclear atypia, the detection of 
OLP by inflammatory cell count is less reliable due to the difficul-
ty in differentiating it from other chronic inflammatory diseases, 
and related studies are rarely reported.

DL for optical coherence tomography (OCT) images
OCT is a non-invasive and radiation-free real-time imaging meth-
od. The advantage of OCT is that it provides real-time images with 
a resolution comparable to that of pathological examination, which 
can be used to determine the edge of the tumor.39,40 The principle 
of OCT is similar to that of ultrasound examination, where elec-
tromagnetic waves of a certain wavelength pass through the tissue, 
and the optical properties of the tissue determine the optical path 
and depth of the light. Compared with normal tissues, tumors and 
precancerous lesions have a larger nuclear/plasma ratio, widened 

epithelial spikes, and a thickened basement membrane, leading to 
speckle-like images on OCT.41 The major drawback of OCT is that 
its evaluation depends on the operator’s professional knowledge. 
Since the imaging configuration differs from conventional radio-
logical examinations, many specialists find it difficult to evaluate 
the image reports.

James et al.42 used a DL-based Support Vector Machine (SVM) 
to automatically diagnose 347 OCT images (151 normal oral mu-
cosa, 121 OPMDs, and 75 malignant lesions). The model achieved 
a sensitivity of 93% and specificity of 74% for OPMDs, and a sen-
sitivity of 95% and specificity of 76% for malignant tumors. The 
Inception-ResNet-v2-SVM model showed the highest sensitivity 
(83%) in differentiating mild dysplasia from moderate to severe 
dysplasia. These studies indicate that the accuracy of the SVM 
model in interpreting OCT images is comparable to that of patho-
logical examination.42 Heidari et al.43 developed a CNN model to 
classify OCT images of OSCC and dysplasia in order to determine 
the boundary between normal and abnormal tissues in 3D imag-
es. Surprisingly, the sensitivity and specificity of the model were 
100% and 70%, respectively, while the sensitivity and specificity 
of expert pathologists were 85% and 78%, respectively. Although 
the performance of the CNN model is close to that of pathologists, 
the model may misjudge uninvolved tissue as abnormal.43

Application of DL in predicting and monitoring the prognosis 
of OPMDs
With the advent of AI in medicine, DL techniques have become a 
common method for predicting disease development and outcomes 
based on informative data. Many studies have reported the use of 
DL algorithms to predict tumor development, including malignant 
transformation, lymph node metastasis, and prognosis.44,45 These 
algorithms learn from health data to provide automatic and exclu-
sive prediction or classification of clinical outcomes without direct 
programming by the user. Many products based on this technology 
are used in precision medicine to support clinical decision-making 
and encourage individualized treatment choices for patients.46–48

For OPMDs, it is important to estimate the rate of malignant 
transformation of lesions when designing treatment. Unfortunate-
ly, the malignant transformation rate of many OPMDs, including 
oral leukoplakia, is highly variable. Clinicians should consider the 
location, size, color, and other characteristics of the lesion, as well 
as the grade of epithelial dysplasia, to analyze the prognosis. Most 
models used to predict the prognosis of oral cancer focus more on 
tumor metastasis, clinical outcomes, and treatment effects, while 
they often overlook the malignant transformation of OPMDs. 
Some models that claim to predict the rate of malignancy in OP-
MDs simply classify the predictions into high- and low-risk cat-
egories, rather than including real-time data as a dynamic variable 
of transformation probability over time. Obviously, the latter has 
greater clinical application value but is less explored in research.

Wang et al.49 developed two random forest classification mod-
els: the baseline model and the personalized model (model-P), to 
predict the malignant risk level of OPMDs. This study collected 
personal information (age, gender, lifestyle, and lesion status), 
non-invasive oral examinations (toluidine blue staining and au-
tofluorescence), oral tissue biopsies, histopathological analysis, 
and treatment options. After comparing the performance of the 
baseline model, model-P, and clinical experts in predicting the risk 
of malignant transformation, the specificity of all three was com-
parable (about 90%), while the sensitivity of model-P was better 
than the other two (over 80%). The study also found that the scope 
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of autofluorescence loss, toluidine blue staining score, and degree 
of lesion infiltration were important factors affecting carcinogen-
esis.49 Adeoye et al.50 compared three DL models (DeepSurv, 
time-dependent neural network Cox model, and DeepHit) with two 
conventional statistical models (random survival forest and Cox 
proportional hazards) to predict the risk probability of malignant 
transformation of OPMDs. The predictors entered into these mod-
els were gender, age, history of smoking and drinking, abstinence 
from bad habits, history of cancer, family history, hypertension, 
hyperlipidemia, diabetes, autoimmune disease, viral hepatitis, and 
the location and classification of the lesion. The DeepSurv algo-
rithm was found to have the best discrimination performance when 
simulating the malignant transformation risk of oral leukoplakia 
and oral lichenoid lesions. However, the conventional random sur-
vival forest model outperformed other models in probability cali-
bration.50

Difficulties in image analysis and AI algorithms
Automatic classification of medical images is one of the main ap-
plications of AI in the medical field. A recent review of AI/ML-
based medical devices approved in the United States and Europe 
between 2015 and 2020 found 126 devices approved or CEmarked 
for radiological use in Europe and 129 devices in the United States, 
both representing more than half of the total reviewed.51 However, 
the identification and analysis of medical images by AI require the 
corresponding image database. Unfortunately, large databases of 
OPMDs and oral cancer have not been established for either clini-
cal photographic images or pathological images, which limits the 
promotion of current AI-related technologies. Although Warin et 
al. found that DenseNet121, a newly developed deep CNN model, 
can reduce task overfitting caused by small databases, the ongoing 
challenges of database limitations still cannot be ignored.47,52,53 
For this reason, Davenport et al.47 claim that humans are unlikely 
to see substantial changes in healthcare employment due to AI over 
the next 20 years. To address low-resolution images, Chen et al.54 
proposed a joint framework called SRFBN+, which contains a 
novel transfer learning strategy and a deep super-resolution frame-
work for generating high-resolution slice images from low-reso-
lution slice images. The test results show that SRFBN+ performs 
well in generating super-resolution pathological examination im-
ages.54 Most of the DL-based models for detecting OPMDs rely 
on various clinical images, and the quality and standardization of 
these images present a major challenge for future AI applications.

The CNN algorithm has unique advantages in image process-
ing, which is helpful for DL of pathological or photographic image 
classification. With the assistance of CNN, the computer automati-
cally identifies the best features to match the target image by pre-
designing the learned feature variables and directly classifies the 
image without relying on a large amount of data preprocessing or 
human operation.14 However, CNN has two obvious drawbacks: 
first, training and testing the model takes a lot of time, and sec-
ond, details may be lost due to glare when processing images. It is 
crucial to test how well the model works, and evaluation includes 
three aspects: statistical validity, clinical utility, and economic util-
ity.48 Therefore, improving the time-consuming problem remains 
difficult. The loss of detail in resolution is related to the normaliza-
tion method and the convolutional layer architecture of the CNN. 
Both the imaging equipment and methods affect the quality of the 
images, which in turn impacts the auxiliary diagnosis results of the 
AI model. This calls for the development of a set of image qual-
ity standards similar to those being developed for imaging. The 

problem of convolutional layer architecture can only be improved 
with the help of other DL algorithms, such as Fully Convolutional 
Networks.35

For the algorithm itself, it is better to propose a new algorithm 
than to optimize the one already in use, as the latter may lead to the 
conclusion that some subdomain algorithms are not improving.35 
The development of new algorithms requires creating a multidis-
ciplinary team that includes computer and social scientists, opera-
tions and research leaders, clinical stakeholders (physicians, car-
egivers, and patients), and experts in related disciplines. However, 
algorithm optimization must take various trade-offs into account 
due to the limitations of data and computing power.

Currently, some studies use manual cropping of the region of 
interest to preprocess images, while other studies use segmenta-
tion models to divide images into patches of a certain size to avoid 
errors in manual process.55 However, the limitation of this method 
is that the network cannot directly analyze the image as a whole 
and can only focus on a small part, which may also account for the 
loss of details. Wirtz et al.56 believe that image segmentation is 
limited by the amount of data and computing power. In the future, 
algorithms that can analyze the whole image without human inter-
vention in the preprocessing stage should be developed, allowing 
for more accurate results per unit of computational cost.56

Discussion
In an era of increasing digitization of human health data, DL is 
expected to play a significant role in the development, validation, 
and implementation of decision support tools to facilitate precision 
medicine. In this review, we have demonstrated many promising 
applications of DL in various fields of OPMDs, including digital 
clinical photographic image analysis, autofluorescence spectrosco-
py analysis, exfoliated cell examination, pathological section anal-
ysis, and OCT image analysis for auxiliary diagnosis. Additionally, 
we discussed the performance of different DL models in predicting 
the prognosis of OPMDs (Table 1).19–23,26,31,32,37,38,42,43,49,50 Cur-
rently, most DL models for the auxiliary diagnosis of OPMDs ap-
pear to have more potential in screening, and the use of AI technol-
ogy to interpret exfoliative cytology is one of the most convenient 
and promising screening methods. The promotion of these tech-
nologies could address some of the difficulties associated with the 
diagnosis of OPMDs in medically underserved areas, potentially 
reducing the workload of clinicians and pathologists and minimiz-
ing the interference of their subjectivity. However, DL models still 
face challenges such as insufficient image databases, low resolu-
tion of images, and limitations in the performance of the algo-
rithms themselves. In the future, there may be technologies that 
diagnose OPMDs based on salivary markers, with corresponding 
DL models potentially offering more meaningful screening. An-
other emerging frontier is histologic inference of genomic features. 
As research progresses, the future of DL applications in the field 
of OPMDs will likely focus on multimodal learning to integrate 
medical images and omics data to identify biologically meaningful 
biomarkers.57 AI algorithms for predicting patient prognosis have 
long been applied in oncology,58–60 and even some AI models in 
commercial treatment planning systems, such as RapidPlan and 
Auto-Planning, can automatically plan and design treatment strate-
gies.61,62 Unfortunately, few of these frontier studies have been ap-
plied to the field of OPMDs. In the future, integrated AI algorithms 
capable of analyzing mucosal lesions and automatically generating 
diagnostic reports and evaluating treatment options may be devel-
oped. Rapidly evolving DL technologies are expected to continue 
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having a significant impact on the field of OPMDs in the near fu-
ture. Both researchers and physicians need to be prepared for this 
revolutionary era.

Conclusions
This review summarizes five image analysis methods based on 
deep learning neural networks for the diagnosis of OPMDs and the 
prediction of malignant risk. Furthermore, the current limitations 
and future development prospects of deep learning in OPMDs are 
evaluated. The combination of these emerging technologies and 
diagnostic methods will change the clinical diagnosis and treat-
ment of OPMDs.
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